PtdIns(4,5)P2 Functions at the Cleavage Furrow during Cytokinesis
نویسندگان
چکیده
Phosphoinositides play important roles in regulating the cytoskeleton and vesicle trafficking, potentially important processes at the cleavage furrow. However, it remains unclear which, if any, of the phosphoinositides play a role during cytokinesis. A systematic analysis to determine if any of the phosphoinositides might be present or of functional importance at the cleavage furrow has not been published. Several studies hint at a possible role for one or more phosphoinositides at the cleavage furrow. The best of these are genetic data identifying mutations in phosphoinositide-modifying enzymes (a PtdIns(4)P-5-kinase in S. pombe and a PI-4-kinase in D. melanogaster) that interfere with cytokinesis. The genetic nature of these experiments leaves questions as to how direct may be their contribution to cytokinesis. Here we show that a single phosphoinositide, PtdIns(4,5)P2, specifically accumulates at the furrow. Interference with PtdIns(4,5)P2 interferes with adhesion of the plasma membrane to the contractile ring at the furrow. Finally, four distinct interventions to specifically interfere with PtdIns(4,5)P2 each impair cytokinesis. We conclude that PtdIns(4,5)P2 is present at the cleavage furrow and is required for normal cytokinesis at least in part because of a role in adhesion between the contractile ring and the plasma membrane.
منابع مشابه
Continuous phosphatidylinositol metabolism is required for cleavage of crane fly spermatocytes.
Successful cleavage of animal cells requires co-ordinated regulation of the actomyosin contractile ring and cleavage furrow ingression. Data from a variety of systems implicate phosphoinositol lipids and calcium release as potential regulators of this fundamental process. Here we examine the requirement for various steps of the phosphatidylinositol (PtdIns) cycle in dividing crane fly (Nephroto...
متن کاملThe Inositol 5-Phosphatase dOCRL Controls PI(4,5)P2 Homeostasis and Is Necessary for Cytokinesis
During cytokinesis, constriction of an equatorial actomyosin ring physically separates the two daughter cells. At the cleavage furrow, the phosphoinositide PI(4,5)P2 plays an important role by recruiting and regulating essential proteins of the cytokinesis machinery [1]. Accordingly, perturbation of PI(4,5)P2 regulation leads to abortive furrowing and binucleation [2-4]. To determine how PI(4,5...
متن کاملProfilin interaction with phosphatidylinositol (4,5)-bisphosphate destabilizes the membrane of giant unilamellar vesicles.
Profilin, a small cytoskeletal protein, and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] have been implicated in cellular events that alter the cell morphology, such as endocytosis, cell motility, and formation of the cleavage furrow during cytokinesis. Profilin has been shown to interact with PI(4,5)P2, but the role of this interaction is still poorly understood. Using giant unilamellar...
متن کاملHow PI3K-derived lipids control cell division
To succeed in cell division, intense cytoskeletal and membrane remodeling are required to allow accurate chromosome segregation and cytoplasm partitioning. Spatial restriction of the actin dynamics and vesicle trafficking define the cell symmetry and equivalent membrane scission events, respectively. Protein complexes coordinating mitosis are recruited to membrane microdomains characterized by ...
متن کاملDrosophila F-BAR protein Syndapin contributes to coupling the plasma membrane and contractile ring in cytokinesis
Cytokinesis is a highly ordered cellular process driven by interactions between central spindle microtubules and the actomyosin contractile ring linked to the dynamic remodelling of the plasma membrane. The mechanisms responsible for reorganizing the plasma membrane at the cell equator and its coupling to the contractile ring in cytokinesis are poorly understood. We report here that Syndapin, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005